
ScaLAPACK
Osni Marques

Lawrence Berkeley National Laboratory (LBNL)
OAMarques@lbl.gov

Sixth DOE ACTS Collection Workshop
Building Robust Scientific and Engineering High-End Computing Applications

08/23/2005ACTS Collection Workshop - ScaLAPACK 2

Outline

• Motivation
• ScaLAPACK: software structure

• Basic Linear Algebra Subprograms (BLAS)
• Linear Algebra PACKage (LAPACK)
• Basic Linear Algebra Communication Subprograms (BLACS)
• Parallel BLAS (PBLAS)

• ScaLAPACK: details
• Data layout
• Array descriptors
• Error handling
• Performance

• Hands-on

08/23/2005ACTS Collection Workshop - ScaLAPACK 3

Application: Cosmic Microwave Background (CMB) Analysis
• The statistics of the tiny variations in the CMB (the faint echo of

the Big Bang) allows the determination of the fundamental
parameters of cosmology to the percent level or better.

• MADCAP (Microwave Anisotropy Dataset Computational
Analysis Package)

• Makes maps from observations of the CMB and then calculates their
angular power spectra. (See http://crd.lbl.gov/~borrill).

• Calculations are dominated by the solution of linear systems of the
form M=A-1B for dense nxn matrices A and B scaling as O(n3) in flops.
MADCAP uses ScaLAPACK for those calculations.

• On the NERSC Cray T3E (original code):
• Cholesky factorization and triangular solve.
• Typically reached 70-80% peak performance.
• Solution of systems with n ~ 104 using tens of processors.
• The results demonstrated that the Universe is spatially flat, comprising

70% dark energy, 25% dark matter, and only 5% ordinary matter.
• On the NERSC IBM SP:

• Porting was trivial but tests showed only 20-30% peak performance.
• Code rewritten to use triangular matrix inversion and triangular matrix

multiplication � one-day work
• Performance increased to 50-60% peak.
• Solution of previously intractable systems with n ~ 105 using hundreds

of processors.

The international
BOOMERanG collaboration
announced results of the
most detailed measurement
of the cosmic microwave
background radiation (CMB),
which strongly indicated
that the universe is flat
(Apr. 27, 2000).

08/23/2005ACTS Collection Workshop - ScaLAPACK 4

ScaLAPACK: Applications

Advanced Computational Research in
Fusion (SciDAC Project, PI Mitch

Pindzola). Point of contact: Dario Mitnik
(Dept. of Physics, Rollins College).

Mitnik attended the workshop on the
ACTS Collection in September 2000
and afterwards actively used ACTS

tools, in particular ScaLAPACK. Dario
has worked on the development, testing
and support of new scientific simulation

codes related to the study of atomic
dynamics using time-dependent close
coupling lattice and time-independent
methods. He has reported that this

work could not be carried out in
sequential machines and that

ScaLAPACK was fundamental for the
parallelization of these codes.

Two ScaLAPACK routines,
PZGETRF and PZGETRS,
are used for solution of
linear systems in the
spectral algorithms based
AORSA code (Batchelor et
al.), which is intended for
the study of
electromagnetic wave-
plasma interactions. The
code reaches 68% of peak
performance on 1936
processors of an IBM SP.

Model for the
internal

structure of the
Earth,

resolution
matrix (Vasco
and Marques)

Induced current
(white arrows) and
charge density
(colored plane and
gray surface) in
crystallized
glycine due to an
external field;
courtesy of Louie,
Yoon, Pfrommer
and Canning (UCB
and LBNL).

08/23/2005ACTS Collection Workshop - ScaLAPACK 5

ScaLAPACK: software structure

ScaLAPACK

BLAS

LAPACK BLACS

MPI/PVM/...

PBLAS
Global
Local

platform specific

Clarity,modularity, performance
and portability. Atlas can be

used here for automatic tuning.

Clarity,modularity, performance
and portability. Atlas can be

used here for automatic tuning.

Version 1.7 released in August 2001;
new developments under way.

Version 1.7 released in August 2001;
new developments under way.

Linear systems, least
squares, singular

value decomposition,
eigenvalues.

Linear systems, least
squares, singular

value decomposition,
eigenvalues.

Communication
routines targeting

linear algebra
operations.

Communication
routines targeting

linear algebra
operations.

Parallel BLAS.Parallel BLAS.

http://acts.nersc.gov/scalapack

Communication layer
(message passing).

Communication layer
(message passing).

08/23/2005ACTS Collection Workshop - ScaLAPACK 6

BLAS

• Clarity: code is shorter and easier to read.
• Modularity: gives programmer larger building blocks.
• Performance: manufacturers (usually) provide tuned

machine-specific BLAS.
• Portability: machine dependencies are confined to the

BLAS.
• Key to high performance: effective use of memory

hierarchy (true on all architectures).

(Basic Linear Algebra Subroutines)

08/23/2005ACTS Collection Workshop - ScaLAPACK 7

BLAS: 3 levels

• Level 1 BLAS: vector-vector

• Level 2 BLAS: matrix-vector

• Level 3 BLAS: matrix-matrix

+ *

*

+ *

Development of blocked algorithms is
important for performance!

10
0.

0
10

00
.0

10
00

0.
0

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

order of matrix/vector

M
flo

p/
s

BLAS 1
BLAS 2
BLAS 3

2.2 GHz AMD Opteron

08/23/2005ACTS Collection Workshop - ScaLAPACK 8

LAPACK

• Linear Algebra library written in Fortran 77 (Fortran 90, C
and C++ versions also available).

• Combine algorithms from LINPACK and EISPACK into a
single package.

• Efficient on a wide range of computers (RISC, Vector,
SMPs).

• User interface similar to LINPACK (Single, Double,
Complex, Double Complex).

• Built atop level 1, 2, and 3 BLAS for high performance,
clarity, modularity and portability.

(http://www.netlib.org/lapack)

08/23/2005ACTS Collection Workshop - ScaLAPACK 9

LAPACK: features

• Basic problems:
• Linear systems:
• Least squares:
• Singular value decomposition:
• Eigenvalues and eigenvectors:

• LAPACK does not provide routines for structured problems
or general sparse matrices (i.e. sparse storage formats such
as compressed-row, -column, -diagonal, skyline ...).

• LAPACK Users’ Guide, Third Edition (1999)

bAx =

2
min bAx −

TVUA Σ=
BzAzzAz λλ == ,

08/23/2005ACTS Collection Workshop - ScaLAPACK 10

BLACS

• A design tool, they are a conceptual aid in design and
coding.

• Associate widely recognized mnemonic names with
communication operations. This improves:
• program readability
• self-documenting quality of the code.

• Promote efficiency by identifying frequently occurring
operations of linear algebra which can be optimized on
various computers.

(Basic Linear Algebra Communication Subroutines)

08/23/2005ACTS Collection Workshop - ScaLAPACK 11

BLACS: basics

• Processes are embedded in a two-dimensional grid.

Example: a 3x4 grid

• An operation which involves more than one sender and
one receiver is called a scoped operation.

10 32

0

0

1 2 3

54 76

98 1110

1

2

Scope Meaning
Row All processes in a process row participate.
Column All processes in a process column participate.
All All processes in the process grid participate.

08/23/2005ACTS Collection Workshop - ScaLAPACK 12

BLACS: communication routines

Send/Receive:
_xxSD2D(ICTXT,[UPLO,DIAG],M,N,A,LDA,RDEST,CDEST)

_xxRV2D(ICTXT,[UPLO,DIAG],M,N,A,LDA,RSRC,CSRC)

_ (Data type) xx (Matrix type)
I: Inte ge r,
S: Re al,
D: Double Pre cis ion,
C: Comple x,
Z: Double Complex.

GE: Ge ne ral re ctangular matrix
TR: Trape zoidal matrix

SCOPE TOP

‘Row’
‘Column’
‘All’

‘ ‘ (de fault)
‘Incre as ing Ring’
‘1 -tre e ’ ...

Broadcast:
_xxBS2D(ICTXT,SCOPE,TOP,[UPLO,DIAG],M,N,A,LDA)

_xxBR2D(ICTXT,SCOPE,TOP,[UPLO,DIAG],M,N,A,LDA,RSRC,CSRC)

08/23/2005ACTS Collection Workshop - ScaLAPACK 13

BLACS: global combine operations

• Perform element-wise SUM, |MAX|, |MIN|, operations on triangular
matrices:
_GSUM2D(ICTXT,SCOPE,TOP,M,N,A,LDA,RDEST,CDEST)

_GAMX2D(ICTXT,SCOPE,TOP,M,N,A,LDA,RA,CA,RCFLAG,RDEST,CDEST)

_GAMN2D(ICTXT,SCOPE,TOP,M,N,A,LDA,RA,CA,RCFLAG,RDEST,CDEST)

• RDEST = –1 indicates that the result of the operation should be left on all
processes selected by SCOPE.

• For |MAX|, |MIN|, when RCFLAG = –1, RA and CA are not referenced;
otherwise RA and CA are set on output with the coordinates of the process
owning the corresponding maximum (or minimum) element in absolute
value of A.

08/23/2005ACTS Collection Workshop - ScaLAPACK 14

BLACS: example

����

* Get system information

CALL BLACS_PINFO(IAM, NPROCS)

����

* Get default system context

CALL BLACS_GET(0, 0, ICTXT)

����

* Define 1 x (NPROCS/2+1) process grid

NPROW = 1

NPCOL = NPROCS / 2 + 1

CALL BLACS_GRIDINIT(ICTXT, ‘Row’, NPROW, NPCOL)

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

* If I’m not in the grid, go to end of program

IF(MYROW.NE.-1) THEN
IF(MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN

CALL DGESD2D(ICTXT, 5, 1, X, 5, 1, 0)
ELSE IF(MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN

CALL DGERV2D(ICTXT, 5, 1, Y, 5, 0, 0)
END IF

����

CALL BLACS_GRIDEXIT(ICTXT)

END IF

����

CALL BLACS_EXIT(0)

END

• The BLACS context is the
BLACS mechanism for
partitioning communication
space.

• A message in a context cannot
be sent or received in another
context.

• The context allows the user to
• create arbitrary groups of

processes
• create multiple

overlapping and/or disjoint
grids

• isolate each process grid so
that grids do not interfere
with each other

• BLACS context ⇔⇔⇔⇔ MPI
communicator

send X to process (1,0)

See http://www.netlib.org/blacs
for more information.

(output)
process row and

column coordinate

receive X from process (0,0)
leave context

exit from the BLACS

(out) uniquely identifies each process
(out) number of processes available

(in) integer handle indicating the context
(in) use (default) system context
(out) BLACS context

08/23/2005ACTS Collection Workshop - ScaLAPACK 15

• Similar to the BLAS in portability, functionality and naming.
• Built atop the BLAS and BLACS
• Provide global view of matrix

CALL DGEXXX(M, N, A(IA, JA), LDA, ...)

CALL PDGEXXX(M, N, A, IA, JA, DESCA, ...)

PBLAS

BLAS

PBLAS

(Parallel Basic Linear Algebra Subroutines)

Array descriptor
(see slides 23-26)
Array descriptor
(see slides 23-26)

08/23/2005ACTS Collection Workshop - ScaLAPACK 16

PBLAS: levels and view of the operands

• Levels:
• Level 1: vector-vector operations.
• Level 2: matrix-vector operations.
• Level 3: matrix-matrix operations.

• Global view of the matrix operands, allowing global
addressing of distributed matrices (hiding complex
local indexing)

A(IA:IA+M-1,JA:JA+N-1)

JA

IA

N_

N

MM_

08/23/2005ACTS Collection Workshop - ScaLAPACK 17

ScaLAPACK: structure of the software

ScaLAPACK

BLAS

LAPACK BLACS

MPI/PVM/...

PBLAS
Global
Local

platform specific

Details:
� Data layout
� Array descriptors
� Error handling
� Performance

08/23/2005ACTS Collection Workshop - ScaLAPACK 18

ScaLAPACK: goals

• Efficiency
• Optimized computation and communication engines
• Block-partitioned algorithms (Level 3 BLAS) for good node performance

• Reliability
• Whenever possible, use LAPACK algorithms and error bounds.

• Scalability
• As the problem size and number of processors grow
• Replace LAPACK algorithm that did not scale (new ones into LAPACK)

• Portability
• Isolate machine dependencies to BLAS and the BLACS

• Flexibility
• Modularity: build rich set of linear algebra tools (BLAS, BLACS, PBLAS)

• Ease-of-Use
• Calling interface similar to LAPACK

08/23/2005ACTS Collection Workshop - ScaLAPACK 19

ScaLAPACK: data layouts

• 1D block and cyclic column distributions

• 1D block-cycle column and 2D block-cyclic distribution
• 2D block-cyclic used in ScaLAPACK for dense matrices

08/23/2005ACTS Collection Workshop - ScaLAPACK 20

ScaLAPACK: 2D Block-Cyclic Distribution

a11 a12 a15 a13 a14

a21 a22 a25 a23 a24

a51 a52 a55 a53 a54

a31 a32 a35 a33 a34

a41 a42 a45 a43 a44

5x5 matrix partitioned in 2x2 blocks 2x2 process grid point of view

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

0 1

2 3

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

08/23/2005ACTS Collection Workshop - ScaLAPACK 21

2D Block-Cyclic Distribution

−−−−
−−−

−−
−

5.54.53.52.51.5
5.44.43.42.41.4
5.34.33.32.31.3
5.24.23.22.21.2
5.14.13.12.11.1 oooo

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

IF (MYROW.EQ.0 .AND. MYCOL.EQ.0) THEN
A(1) = 1.1; A(2) = -2.1; A(3) = -5.1;
A(1+LDA) = 1.2; A(2+LDA) = 2.2; A(3+LDA) = -5.2;
A(1+2*LDA) = 1.5; A(2+3*LDA) = 2.5; A(3+4*LDA) = -5.5;

ELSE IF (MYROW.EQ.0 .AND. MYCOL.EQ.1) THEN
A(1) = 1.3; A(2) = 2.3; A(3) = -5.3;
A(1+LDA) = 1.4; A(2+LDA) = 2.4; A(3+LDA) = -5.4;

ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.0) THEN
A(1) = -3.1; A(2) = -4.1;
A(1+LDA) = -3.2; A(2+LDA) = -4.2;
A(1+2*LDA) = 3.5; A(2+3*LDA) = 4.5;

ELSE IF (MYROW.EQ.1 .AND. MYCOL.EQ.1) THEN
A(1) = 3.3; A(2) = -4.3;
A(1+LDA) = 3.4; A(2+LDA) = 4.4;

END IF

oooo

CALL PDGESVD(JOBU, JOBVT, M, N, A, IA, JA, DESCA, S, U, IU,
JU, DESCU, VT, IVT, JVT, DESCVT, WORK, LWORK,
INFO)

oooo

a11 a12 a15 a13 a14

a21 a22 a25 a23 a24

a51 a52 a55 a53 a54

a31 a32 a35 a33 a34

a41 a42 a45 a43 a44

0 1

2 3

0 1

0

1

LDA is the leading
dimension of the local
array (see slides 23-26)

LDA is the leading
dimension of the local
array (see slides 23-26)

Array descriptor for A
(see slides 23-26)

Array descriptor for A
(see slides 23-26)

08/23/2005ACTS Collection Workshop - ScaLAPACK 22

2D Block-Cyclic Distribution

• Ensures good load balance → performance and scalability
(analysis of many algorithms to justify this layout).

• Encompasses a large number of data distribution schemes (but not all).
• Needs redistribution routines to go from one distribution to the other.
• See http://acts.nersc.gov/scalapack/hands-on/datadist.html

08/23/2005ACTS Collection Workshop - ScaLAPACK 23

ScaLAPACK: array descriptors

• Each global data object is assigned an array descriptor.
• The array descriptor:

• Contains information required to establish mapping between a
global array entry and its corresponding process and memory location
(uses concept of BLACS context).

• Is differentiated by the DTYPE_ (first entry) in the descriptor.
• Provides a flexible framework to easily specify additional data

distributions or matrix types.

• User must distribute all global arrays prior to the invocation
of a ScaLAPACK routine, for example:
• Each process generates its own submatrix.
• One processor reads the matrix from a file and send pieces to other

processors (may require message-passing for this).

08/23/2005ACTS Collection Workshop - ScaLAPACK 24

DESC_() Symbolic Name Scope Definition

1
2
3
4
5
6
7

8

9

DTYPE_A
CTXT_A
M_A
N_A
MB_A
NB_A
RSRC_A

CSRC_A

LLD_A

(global)
(global)
(global)
(global)
(global)
(global)
(global)

(global)

(local)

Descriptor type DTYPE_A=1 for dense matrices.
BLACS context handle.
Number of rows in global array A.
Number of columns in global array A.
Blocking factor used to distribute the rows of array A.
Blocking factor used to distribute the columns of array A.
Process row over which the first row of the array A is
distributed.
Process column over which the first column of the array A
is distributed.
Leading dimension of the local array.

Array Descriptor for Dense Matrices

08/23/2005ACTS Collection Workshop - ScaLAPACK 25

Array Descriptor for Narrow Band Matrices

DESC_() Symbolic Name Scope Definition
1

2
3
4
5

6

7

DTYPE_A

CTXT_A
N_A
NB_A
CSRC_A

LLD_A

−−−−

(global)

(global)
(global)
(global)
(global)

(local)

−−−−

Descriptor type DTYPE_A=501 for 1 x Pc process grid for
band and tridiagonal matrices block-column distributed.
BLACS context handle.
Number of columns in global array A.
Blocking factor used to distribute the columns of array A.
Process column over which the first column of the array A
is distributed.
Leading dimension of the local array. For the tridiagonal
subroutines, this entry is ignored.
Unused, reserved.

08/23/2005ACTS Collection Workshop - ScaLAPACK 26

Array Descriptor for Right Hand Sides for Narrow Band Linear Solvers

DESC_() Symbolic Name Scope Definition

1

2
3
4
5

6

7

DTYPE_B

CTXT_B
M_B
MB_B
RSRC_B

LLD_B

−−−−

(global)

(global)
(global)
(global)
(global)

(local)

−−−−

Descriptor type DTYPE_B=502 for Pr x 1 process grid for
block-row distributed matrices
BLACS context handle
Number of rows in global array B
Blocking factor used to distribute the rows of array B
Process row over which the first row of the array B is
distributed
Leading dimension of the local array. For the tridiagonal
subroutines, this entry is ignored
Unused, reserved

08/23/2005ACTS Collection Workshop - ScaLAPACK 27

ScaLAPACK: Functionality

xx
x
x

xLeast Squares
GQR
GRQ

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx

xxxx
xxxx
xxxx

Symmetric
General
Generalized BSPD
SVD

SolutionReductionExpert
Driver

Simple
Driver

Ax = λλλλx or Ax = λλλλBx

xxxx
x
x

x
x
x

xx
x
x

General
General Banded
General Tridiagonal

xxxx
x
x

x
x
x

xx
x
x

SPD
SPD Banded
SPD Tridiagonal

xxxxTriangular

Iterative
Refinement

Conditioning
Estimator

InversionSolveFactorExpert
Driver

Simple
Driver

Ax = b

08/23/2005ACTS Collection Workshop - ScaLAPACK 28

ScaLAPACK: error handling

• Driver and computational routines perform global and
local input error-checking.
• Global checking → synchronization
• Local checking → validity

• No input error-checking is performed on the auxiliary
routines.

• If an error is detected in a PBLAS or BLACS routine
program execution stops.

08/23/2005ACTS Collection Workshop - ScaLAPACK 29

ScaLAPACK: debugging hints

• Look at ScaLAPACK example programs.
• Always check the value of INFO on exit from a

ScaLAPACK routine.
• Query for size of workspace, LWORK = –1.
• Link to the Debug Level 1 BLACS (specified by

BLACSDBGLVL=1 in Bmake.inc).
• Consult errata files on netlib:

http://www.netlib.org/scalapack/errata.scalapack
http://www.netlib.org/blacs/errata.blacs

08/23/2005ACTS Collection Workshop - ScaLAPACK 30

ScaLAPACK: Performance

• The algorithms implemented in ScaLAPACK are scalable in the sense
that the parallel efficiency is an increasing function of N2/P (problem
size per node).

• Maintaining memory use per node constant allows efficiency to be
maintained (in practice, a slight degradation is acceptable).

• Use efficient machine-specific BLAS (not the Fortran 77 source code available
in http://www.netlib.gov) and BLACS (nondebug installation).

• On a distributed-memory computer:
• Use the right number of processors

• Rule of thumb: P=MxN/106 for an MxN matrix, which provides a
local matrix of size approximately 1000-by-1000.

• Do not try to solve a small problem on too many processors.
• Do not exceed the physical memory.

• Use an efficient data distribution.
• Block size (i.e., MB,NB) = 64.
• Square processor grid: Prow = Pcolumn.

-

50

100

150

200

250
10

00
30

00
50

00
70

00
90

00
11

00
0

13
00

0
15

00
0

17
00

0
19

00
0

21
00

0
23

00
0

25
00

0
27

00
0

29
00

0
31

00
0

order of the matrix

tim
e

(s
)

p = 2 (1x2)
p = 4 (2x2)
p = 8 (2x4)
p = 16 (4x4)
p = 32 (4x8)
p = 64 (8x8)

LU on 2.2 GHz AMD Opteron (4.4 GFlop/s peak performance)

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1.6E+05

1.8E+05

10
00

30
00

50
00

70
00

90
00

11
00

0
13

00
0

15
00

0
17

00
0

19
00

0
21

00
0

23
00

0
25

00
0

27
00

0
29

00
0

31
00

0

order of the matrix

M
flo

p/
s

p = 2 (1x2)
p = 4 (2x2)
p = 8 (2x4)
p = 16 (4x4)
p = 32 (4x8)
p = 64 (8x8)

LU+solve on 2.2 GHz AMD Opteron (4.4 GFlop/s peak performance)

08/23/2005ACTS Collection Workshop - ScaLAPACK 33

ScaLAPACK: Commercial Use

ScaLAPACK has been incorporated in the following commercial packages:

• Fujitsu
• Hewlett-Packard/Convex
• Hitachi
• IBM Parallel ESSL
• NAG Numerical PVM (and MPI) Library
• Cray LIBSCI
• NEC Scientific Software Library
• Sun Scientific Software Library
• Visual Numerics (IMSL)

08/23/2005ACTS Collection Workshop - ScaLAPACK 34

ScaLAPACK: Development Team

• Susan Blackford, UTK
• Jaeyoung Choi, Soongsil University
• Andy Cleary, LLNL
• Ed D'Azevedo, ORNL
• Jim Demmel, UCB
• Inderjit Dhillon, UT Austin
• Jack Dongarra, UTK
• Ray Fellers, LLNL
• Sven Hammarling, NAG
• Greg Henry, Intel

• Sherry Li, LBNL
• Osni Marques, LBNL
• Caroline Papadopoulos, UCSD
• Antoine Petitet, UTK
• Ken Stanley, UCB
• Francoise Tisseur, Manchester
• David Walker, Cardiff
• Clint Whaley, UTK
• Julien Langou, UTK

oooo

08/23/2005ACTS Collection Workshop - ScaLAPACK 35

ScaLAPACK: Summary

• Library of high performance dense linear algebra routines
for distributed-memory computing

• Reliability, scalable and portable
• Calling interface similar to LAPACK
• New developments on the way
• Online survey: http://icl.cs.utk.edu/lapack-forum/survey

08/23/2005ACTS Collection Workshop - ScaLAPACK 36

Hands-on: http://acts.nersc.gov/scalapack/hands-on

08/23/2005ACTS Collection Workshop - ScaLAPACK 37

Hands-on: instructions

• Do a “cp –r /usr/common/acts/SCALAPACK/hands-on hands-on”.
• There are six subdirectories under hands-on:

• Example 1: BLACS, “hello world” example
• Example 2: BLACS, “pi” example
• Example 3: PBLAS example
• Example 4: ScaLAPACK small problem 1
• Example 5: ScaLAPACK small problem 2
• various

• Examples 1-5 are written in Fortran. For a successful compilation
and execution, you may have to correct some lines in the examples,
in particular the lines starting with *** (commented lines).

• Examples 1-5 can be compiled with “make”, which will generate an
executable file with “.x”.

• Try also http://acts.nersc.gov/scalapack/hands-on/datadist.html
with a bigger matrix and different block/grid sizes.

PROGRAM PSSCAEX

* This program solves a linear system by calling the ScaLAPACK
* routine PSGESV. The input matrix and right-and-sides are

* read from a file. The solution is written to a file.

* .. Parameters ..

* ..

* .. Local Scalars ..

* ..
* .. Local Arrays ..

* .. Executable Statements ..

*

* .. Executable Statements ..
*

* Get starting information
*

*** CALL BLACS_*****(IAM, NPROCS)
CALL PSSCAEXINFO(OUTFILE, NOUT, N, NRHS, NB, NPROW, NPCOL, MEM,

$ IAM, NPROCS)
*

* Define process grid
*

*** CALL BLACS_***(-1, 0, ICTXT)
*** CALL BLACS_********(ICTXT, 'Row-major', NPROW, NPCOL)

CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)

����

* Read from file and distribute matrices A and B

*
CALL PSLAREAD('SCAEXMAT.dat', MEM(IPA), DESCA, 0, 0,

$ MEM(IPW))
*** CALL ********('SCAEXRHS.dat', MEM(IPB), DESCB, 0, 0,

$ MEM(IPW))

����

*** CALL ******(N, NRHS, MEM(IPA), 1, 1, DESCA, MEM(IPPIV),

$ MEM(IPB), 1, 1, DESCB, INFO)

����

line to be
fixed!

lines to
be fixed!

08/23/2005ACTS Collection Workshop - ScaLAPACK 39

Contents of hands-on/various

pdgesvddrv.f: reads a (full) matrix A from a file, distributes A among the available processors and then
call the ScaLAPACK subroutine PDGESVD to compute the SVD of A, A=USV T. It requires the file
pdgesvddrv.dat, which should contain: line 1, the name of the file where A will be read from; line 2, the
number of rows of A; line 3: the number of columns of A. Considering the file A.dat:

• if m=n=10 the results are given in the file A.SVD
• if ���������������	�
������	
�������		�������������������	��������
����
���]
• if m=7, n=10: diag(S)=[����	���������������	�����	�������������������
���]

pddttrdrv.c (pddttrdrv.f): illustrates the
use of the ScaLAPACK routines
PDDTTRF and PDDTTRS to factor and
solve a (diagonally dominant) tridiagonal
system of linear equations Tx = b. After
compilation, it can be executed with
llsubmit pddttrdrv.ll.

pdpttr_2.c (pdpttr_2.f): illustrates the use
of the ScaLAPACK routines PDPTTRF
and PPPTTRS to factor and solve a
symmetric positive definite tridiagonal
system of linear equations Tx = b, in two
distinct contexts. After compilation, it can
be executed with llsubmit pdpttr_2.ll.

08/23/2005ACTS Collection Workshop - ScaLAPACK 40

Data distribution for pdpttr_2.c (pdpttr_2.f)

=

18
27
36
45
54
63
72
81

3093.16946.0
6946.07271.14449.0

4449.05341.15466.0
5466.03412.17027.0

7027.02897.13704.0
3704.03420.15681.0

5681.06602.18385.0
8385.08180.1

)2(
8

)1(
8

)2(
7

)1(
7

)2(
6

)1(
6

)2(
5

)1(
5

)2(
4

)1(
4

)2(
3

)1(
3

)2(
2

)1(
2

)2(
1

)1(
1

xx
xx
xx
xx
xx
xx
xx
xx

Pes 0 and 2

Pes 1 and 3

0 2

1 3

0 2

1 3

/**/
/* This program illustrates the use of the ScaLAPACK routines PDPTTRF */
/* and PPPTTRS to factor and solve a symmetric positive definite */
/* tridiagonal system of linear equations, i.e., T*x = b, with */
/* different data in two distinct contexts. */
/**/

/* a bunch of things omitted for the sake of space */

main()
{

/* Start BLACS */
Cblacs_pinfo(&mype, &npe);
Cblacs_get(0, 0, &context);
Cblacs_gridinit(&context, "R", 1, npe);
/* Processes 0 and 2 contain d(1:4) and e(1:4) */
/* Processes 1 and 3 contain d(5:8) and e(5:8) */
if (mype == 0 || mype == 2){

d[0]=1.8180; d[1]=1.6602; d[2]=1.3420; d[3]=1.2897;
e[0]=0.8385; e[1]=0.5681; e[2]=0.3704; e[3]=0.7027;

}
else if (mype == 1 || mype == 3){

d[0]=1.3412; d[1]=1.5341; d[2]=1.7271; d[3]=1.3093;
e[0]=0.5466; e[1]=0.4449; e[2]=0.6946; e[3]=0.0000;

}
if (mype == 0 || mype == 1) {

/* New context for processes 0 and 1 */
map[0]=0; map[1]=1;
Cblacs_get(context, 10, &context_1);
Cblacs_gridmap(&context_1, map, 1, 1, 2);
/* Right-hand side is set to b = [1 2 3 4 5 6 7 8] */
if (mype == 0) {

b[0]=1.0; b[1]=2.0; b[2]=3.0; b[3]=4.0;
}
else if (mype == 1) {

b[0]=5.0; b[1]=6.0; b[2]=7.0; b[3]=8.0;
}
/* Array descriptor for A (D and E) */
desca[0]=501; desca[1]=context_1; desca[2]=n; desca[3]=nb;
desca[4]=0; desca[5]=lda; desca[6]=0;
/* Array descriptor for B */
descb[0]=502; descb[1]=context_1; descb[2]=n; descb[3]=nb;
descb[4]=0; descb[5]=ldb; descb[6]=0;
/* Factorization */
pdpttrf(&n, d, e, &ja, desca, af, &laf,

work, &lwork, &info);
/* Solution */
pdpttrs(&n, &nrhs, d, e, &ja, desca, b, &ib, descb,

af, &laf, work, &lwork, &info);
printf("MYPE=%i: x[:] = %7.4f %7.4f %7.4f %7.4f\n",

mype, b[0], b[1], b[2], b[3]);
}

else {
/* New context for processes 0 and 1 */
map[0]=2; map[1]=3;
Cblacs_get(context, 10, &context_2);
Cblacs_gridmap(&context_2, map, 1, 1, 2);
/* Right-hand side is set to b = [8 7 6 5 4 3 2 1] */
if (mype == 2) {

b[0]=8.0; b[1]=7.0; b[2]=6.0; b[3]=5.0;
}
else if (mype == 3) {

b[0]=4.0; b[1]=3.0; b[2]=2.0; b[3]=1.0;
}
/* Array descriptor for A (D and E) */
desca[0]=501; desca[1]=context_2; desca[2]=n; desca[3]=nb;
desca[4]=0; desca[5]=lda; desca[6]=0;
/* Array descriptor for B */
descb[0]=502; descb[1]=context_2; descb[2]=n; descb[3]=nb;
descb[4]=0; descb[5]=ldb; descb[6]=0;
/* Factorization */
pdpttrf(&n, d, e, &ja, desca, af, &laf,

work, &lwork, &info);
/* Solution */
pdpttrs(&n, &nrhs, d, e, &ja, desca, b, &ib, descb,

af, &laf, work, &lwork, &info);
printf("MYPE=%i: x[:] = %7.4f %7.4f %7.4f %7.4f\n",

mype, b[0], b[1], b[2], b[3]);
}
Cblacs_gridexit(context);
Cblacs_exit(0);

}

Using Matlab notation:

T = diag(D)+diag(E,-1)+diag(E,1)

where

D = [1.8180 1.6602 1.3420 1.2897 1.3412 1.5341 1.7271 1.3093]
E = [0.8385 0.5681 0.3704 0.7027 0.5466 0.4449 0.6946]

Then, solving T*x = b,

if b = [1 2 3 4 5 6 7 8]
x = [0.3002 0.5417 1.4942 1.8546 1.5008 3.0806 1.0197 5.5692]

if b = [8 7 6 5 4 3 2 1]
x = [3.9036 1.0772 3.4122 2.1837 1.3090 1.2988 0.6563 0.4156]

pdpttr_2.c (pdpttr_2.f)

08/23/2005ACTS Collection Workshop - ScaLAPACK 42

Block Cyclic Distribution

=

10,129,128,127,126,125,124,123,122,121,12

10,119,118,117,116,115,114,113,112,111,11

10,109,108,107,106,105,104,103,102,101,10

10,99,98,97,96,95,94,93,92,91,9

10,89,88,87,86,85,84,83,82,81,8

10,79,78,77,76,75,74,73,72,71,7

10,69,68,67,66,65,64,63,62,61,6

10,59,58,57,56,55,54,53,52,51,5

10,49,48,47,46,45,44,43,42,41,4

10,39,38,37,36,35,34,33,32,31,3

10,29,28,27,26,25,24,23,22,21,2

10,19,18,17,16,15,14,13,12,11,1

aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa

A

Consider the 12-by-10 matrix:

Do the following block cyclic distributions:
• 3-by-3 blocking on a 3-by-2 process grid
• 4-by-4 blocking on a 2-by-3 process grid
Use http://acts.nersc.gov/scalapack/hands-on/datadist.html to compare

